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Abstract—A regularly nonhomogeneous (composite), anisotropic, thin curved layer with rapidly
oscillating material parameters and thickness is considered. It is assumed that the material par-
ameters and thickness are periodic functions. and that thickness and period scale are both small
and of the same order. The spatial elasticity problem for this composite layer is reduced to the new
general homogenized shell model by means of the two-scale asymptotic homogenization method.
The effective characteristics of a homogenized shell are expressed in terms of the solutions of the
auxiliary local problems on the periodicity cell. The homogenized composite shell model is applied
to the analysis of cffective and local propertics of some composite and reinforced shells. The effective
characteristics of wafur-like, honeycomb-like and fibre-reinforced muttilayer composite shells are
deseribed. The obtained formulae for the effective parameters refine the results of some known
constructive-anisotropic theories.

INTRODUCTION

Today, the preponderance of uses for composite materials is in the form of shell and plate
structural members whose strength and reliability, combined with reduced weight and
concomitant material savings, offer the designer very impressive possibilities in some com-
mercial applications. A fact which is of interest for us here is that whether the reinforcing
effect comes from “real” clements (say, fibers) or “formal™ ones (such as voids, holes and
similar design features), it often happens that these form a regular structure with a period
much smaller than the characteristic dimension of the structural member, with a conse-
quence that the asymptotic homogenization analysis becomes applicable. The homogenized
models of plates with periodical nonhomogeneitics in tangential coordinate(s) have been
developed in this way by Duvaut (1976) and some other workers (sece Kalamkarov er af.,
1987a for a review). It should be noted, however, that the asymptotic homogenization
method cannot be applied to a two-dimensional plate and shell theory if the space non-
homogeneities of the material vary on a scale comparable with the small thickness of the
three-dimensional body under consideration. A refined approach developed by Caillerie
{1984) consists of applying the two-scale formalism directly to the three-dimensional prob-
lem of a thin nonhomogeneous layer. An analogous approach was applicd by Kohn and
Vogelius (1984) in the problem of bending in thin homogencous clastic plates with rapidly
varying thickness.

In the present paper the modificd homogenization method is applied to the study of a
curved thin composite shell with a regular structure and wavy surfaces (Kalamkarov er al.,
1987b). The starting point is the exact three-dimensional formulation of the elasticity
problem, without resource to the Kirchhofl-Love hypotheses or any similar simplifying
assumptions, Owing to the presence of the small parameter d, the original three-dimensional
problem then proves to be amenable to a rigorous asymptotic analysis unifying an asymp-
totic three-to-two dimensions process and a homogenization composite material-homo-
geneous material process. The general homogenized model so obtained has many practical
applications in the design of stiffened and composite thin-walled structures (see Parton et
al., 1991).
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GENERAL HOMOGENIZED SHELL MODEL

Let us consider a periodically nonhomogeneous. thin curved layer with rapidly oscil-
lating thickness and introduce orthogonal curvilinear nondimensional coordinates x,, x..
7 such that the coordinate lines x, and x- coincide with the main curvature lines of the
midsurtace of the shell and the 3 axis is normal to the midsurface (Fig. 1). Let the cell of
periodicity Q, (Fig. 1) be determined by the following inequalitics :
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Here the small parameter 6 is the thickness of the skin: parameters /1, and A, have the
orders of unity and determine the ratios of the tangential dimensions of the periodicity cell
to the thickness. The periodic functions F* and £ determine the shape of the upper and
lower faces of the layer. For Lamé coefficients the following formulac are valid

Hy = A, (1+k). Hy= A (1+ko). H,o= 1,

where A, (2, 2;) and A . (%, x,) are the coetlicients of the first quadratic formand & (2. %),
k.(x%,. 2,) the main curvatures of the midsurface (; = 0).
We begin by introducing the “rapid™ coordinates of the problem,

= /(0h), vy =0k, =00,

in terms of which the unit cell Q s defined by the inequalitics
:,"l‘.".‘e(‘“‘L §)~:E(3 .o ):'~ o=t ( HF ().

The regulur nonhomogencity ol the material is mathematically modeled by the require-
ment that the stiffness tensor components a,,,,,, (3. v, 2) be periodic with unit cell Q in the
coordinates 3, and yp,, piccewise-smooth functions. They can have a finite number of
discontinuitics of the first kind on the nonintersecting contact surfaces between dissimilar
constituents (such as matrix and fibers, binder and inclusions).

Following the asymptotic homogenization method (see Sanchez-Pulencia, 1980
Kalimkarov ¢f «f.. 19874, by we postulate for the displacement vector components «, the
following two-scale expunsion :

t, = (@) Fou N (o p L v ) T T v v D

where o = (x,, 2:) ;i = 1,2, 300 (2 vy, vs. 2) when /= 1. 20, are periodic functions in
vy and y, with periodicity cell . It can be proved (see Kalamkarov ef af., 1987b; Parton
et al., 1991) that the following expressions for the main terms of the expansions for the
component of the displacement vector i, and stress tensor g, are valid:

Fig. 1. Curvilinear thin regularly nonhomogencous compostie layer with wuvy surfaces : unit eell €,
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These expressions determine the local structure of displacements and stresses with high
accuracy. The summation convention applies whenever indices are repeated. Latin indices

range from | to 3 and Greek ones from | to 2; ¢y = €,. £€:2 = €2, &2 = &2, = /2 are
tension and shear deformations and 7, = N,, 1,2 = N,, 1,; = 1, = t are bending and

torsion deformations of midsurface (; = oz = 0). All these deformations can be expressed
in terms of displacements of midsurface ¢,. t> and w by well-known relations of the thin
shell theory (see, for example. Novozhilov, 1962).

The coefficients in (2) are determined by the following expressions :

L aum oo
h:, B I, Aymp 7—,?‘ + a,/m} (-‘_ + al[‘h-
i v 2
ol a1 7 Sy
, cb v
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Il S -~

where UL and ¥4 in (1) and (3) arc functions of &, = 4, y,, & = 4.y, and z. These
functions are periodic in variables &, &, with periods A4, and A, respectively, and are
determined by solutions of the following tocal problems :

? 0
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where #,* are components of the normal to the upper (S*) and lower (S ~) surfaces of the
unit cell (Fig. 1) respectively, calculated in the coordinate system &, &, and -.

In the case of rigid contact on the surfaces of discontinuities of material parameters,
the following conditions must be satisficd :

I )
fuw]=o. ﬂ:h by +nhy =0
I
Uy Vi, b ey 3)

where 1> are components of the normal to the contact surface. The jump of a function f

on the contact surface is denoted by [ /]

It can be proved that the local problems (3)—(5) have unique solutions defined up to
the additive constants (see Kalamkarov ef al., 1987b). These constants are determined by
the following conditions

UES =0 when z=0,(U" e V). (6)

Here the symbol (- - -); means integration over the variables ¢, and &, only.
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The elastic relations of the homogenized shell, that is, those between the stress and
moment resultants on the one hand, and the midsurface deformations on the other, are

found from (2). We have

‘Nvl = ‘5<b)‘|“\ >€u\'+é:<(“(&vl>rm- (\ Hz)
‘NVI: = (5<b;f‘i>811\ +(5:<Cl”">ru
M = 33b e + 07 0. (1= 2) (7
My = 33PN e, + 07 ()T,
It can be proved that the following relations arise from {3)-(5):
By = B> ebigd = (D,
ey = ey (nfopr = 1L2). (8)

These relations provide the symmetry of the 6 x 6 coefficient matrix involved in the
elastic constitutive equations (7), the matrix of effective elastic moduli. The averaging
symbol (/> in (7) and (8) means the integration

o~

<j> = [ d_V| d}': d:.

v

The cquations for a homogenized shell can be written n terms of stress and moment

resultants in the following form
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In the above. the external loads are given by

[ A
G, = J } (' p” 4w p,)dydya+8P5
12

t:

N 3

1 2
my = J‘ J (e pi+y @ py ydyy dys +3GPp), (10)
120

N

where the functions w*, defined by the formula

. | ] (=r':3+| ;-Fﬁ)f t:
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of loads on the upper and lower faces of the layer, respectively, and P, are the body force
components, i=1,2,3;f=1,2.

By substitution of relations (7) into eqns (9), we obtain the system of governing
equations for v, v, and w. The boundary conditions can be given in the form accepted in
the theory of thin elastic shells (see. for example, Novozhilov, 1962). In the simple case of
homogeneous material and uniform thickness, all the local problems (3)—(6) can be solved
exactly and the model obtained can be reduced to the known engineering formulation of
thin anisotropic shell theory.

Let us consider now some applications of the general homogenized shell model.

THE ORTHOGONALLY STIFFENED SHELL

The periodicity cell of the orthogonally stiffened wafer-like shell is shown in Fig. 2. It
consists from three elements, Q,. Q. and Q. The local problems have been solved in the
case of small thickness of the cell elements and various anisotropic materials (see Kalamka-
rov. 1989). Formulae for effective stiffness moduli in the more simple case of isotropic
material have the following form:

Chii> =D+E(F,+K). (b)) =D+EF +K))
Chit) =<hi) =vD—EK,. (bi})=G
(el = E(S:+Ky). (i) = ES,+K>y)
<( 1) = ("lb = —[K,, <(:§> =0
(e = DI+ EJ,+K))
<..( 1V> = D/I"‘{"r(., +A )
(zedd) = (e ) =vD/12~EK,

G t I
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Fig. 2. Unit cell of a wafer shell in the coordinate system x,. a,. 7.
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Here £ is the Young's modulus; v, is Poisson’s ratio; the parameters K,. K, and K.
can be calculated from the obtained algebraic equations (see Parton et af.. 1989). The
formulae (11) refine the effective parameters of stiffened shells in comparison with known
constructive-anisotropic theory (according to this theory all of them are equal to zero).
According to the calculations, the following conclusions can be drawn. (1) As found from
formulae (11). the elastic moduli ¢b}|>. <b3i). {clid. (ci3), (zcit) and (z¢33) can be
calculated in the framework of the structurally anisotropic theory (K, = K, = K: = 0). (2)
For the modulus {h}'>, somewhat greater, but also reasonable, percentage changes are
obtained (for example, 4% in the case H = h, = h, = 10. ¢, = 1. = 1). (3) For the moduli
{cil> and (zcil) more significant percentage changes occur. Note that while the change
for (zc}!) is only of a quantitative nature, that for {c}!) is also interesting at a qualitative
level because this modulus vanishes in view of (11) and is assumed to be zero in the
framework of the structurally anisotropic theory of strengthened shells. One more point to
be made is that the percentage changes increase with the height of the ribs (parameter H)
and decrease with the distance between the ribs (parameters /1, ,). Using the solutions of
the system (9). from (2) we are in a posttion to obtain the local stress distributions along
the junctions of reinforcing elements. In particular, if we take o, = &, = /i, then, in the case
of simple bending (r, # 0), the junctions of elements Q, and Q, will be subjected to the
stresses

a!\!x, - ka2 a, =0 T i‘s‘\\(h/vz)(/’(f). o= :“g)‘

The function ¢(z") 1s shown graphically in Fig. 3. The curves marked 1 and 2 correspond.
respectively, to the cases H =20, by =h,=60. 1, =t, =1 =2and H=h, =h, =20,

,l =l: ———5()5

THE HONEYCOMB-LIKE SHELL

The problem we consider here is that of a three-layered shell composed of a honeycomb
filler of hexagonal structure sandwiched between two carrying fayers as shown in Fig. 4.
The caleulation of the nonvanishing effective clastic moduli of the shell of Fig. 4 includes
the solution of the local problems (3) -(6) and is somewhat lengthy to be reproduced here,
so we only quote the final results of the calculation. For an isotropic material. both in the
carrying layers (£,. v,) and in the filler foil (£, v), we have
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Fig. 3. Stress ficlds at the junctions of strengthening clements of a wafer shell under bending.
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Fig. 4. Three-layered shell with a hexagonal honeycomb filler.
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Here

A=Ay =A, Jy=H1p)2+ Hiy+20/3.

The first terms in (12) describe the contribution from the carrying layers, and the
second terms describe that from the filler, It is seen that the contribution of the latter may
be made comparable to, or even greater than, that of the former by appropriately varying.
the parameters £, H, 1 and a. The comparison of (12) with the results, obtained by different
methods in the earlier work on the subject, shows that the greatest corrections occur in the
elastic moduli (b3} and {zci}) (sce Parton et al., 1991).

THE MULTILAYER FIBRE-REINFORCED COMPOSITE SHELL

The term high-stiffness compositc material usually refers to polymer matrix fiber
reinforcement composites in which the Young's modulus of the fiber phase. £ is much
larger than that of the matrix phase, E,. Accordingly, the mechanical behavior of the
composite will be predicted with an error of the order of only £, /E; « 1 if one assumes
that, for comparabie fiber and matrix percentage contents, the role of the matrix is negligible
and the stressed state of the composite is determined by the deformation of the fiber system
alone. The state of stress in the matrix itself will then be found from a problem set in

SAS 29:14/13%-R
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the region occupied by the matrix, under appropriately formulated fiber-matrix interface
conditions.

We thus consider a composite shell formed by N layers of parallel fibers, as shown in
Fig. 5. and assume. in accordance with the above. that the fiber material is much stiffer
than that of the matrix. In this case the solution of the local problems (3)-(6) is much
simplified owing to the decoupling of the regions occupied by fibers and the matrix. and
we will employ this fact when solving these problems for a fiber of the jth layer of the
system (the fiber making an angle ¢, with the coordinate line z,, the departure of the axis
of a fiber from the shell midsurface. y = 0. will be denoted by dq, in coordinates %, x., 7).
The exact solution of local problems was found for the case in which @, = 0. under the
assumption that the fibers were elliptic in cross-section (Kalamkarov, 1987). We use here
this solution in order to get the following expressions for the effective elastic moduli of the
composite shell ;

} v ) v ) A7 5 l .
iy =3 EbB,. (=Y Ebab,. iy =3 Eb, [a,‘+ 16(' + ‘f;’?)]o,. (13

j=1 i=1 r=1

Here E, and v, are the material properties of fibers in the jth layer: 0, is the volumetric
fiber content in the jth layer: parameters b, and ¢, arc determined from the following
formulae for each combination of indices 2, . A, p = 1. 2:

affie =111 b, = A1B *cos* . ¢ =2431an’ o (1 —¢)4,:

!

afti =2222: b, = AIB, sint g, ¢, =2d{ctan® ¢, (1 —¢)4,;

affipn = 12120 b, = A{AIB, *cos™ o, sin® @,
¢, = Mdicot g+ A3 tan" @, =247 A1 = eA,

afiip = 1122,2211: b, = ATAIB, *cos® g, sin” o, ¢, = =24{43(1 =¢])A,;

——

affip = 1112, 1200 b = A[AB, *cos’ @, sing,, ¢ = AHAT g7 @, — AN —¢})A,:
xfip = 1222,2212: h = A, AIB, *cos @, sin* @, ¢, = Ai(Aictg® o, — A1 =¢})A,.
(14)

The notation used in (14) is

B = Aicos’ g, +Aisint @, A = [Bi+AiAi(1—¢})] (15)
and ¢, is the eccentricity of the elliptic cross-section of a fiber of the jth layer. Note that if
weset g, =0 (j=1,2,..., N) in expressions (13), these latter reduce to formulac for
effective elastic moduli of a network-reinforced shell (see Kalamkarov, 1987).

It is of interest to compare the expressions (13)-(15) with similar results that have been
derived from the structurally anisotropic modecl, the essential feature of which is that the
average over the thickness of a multilayered shell is taken after first averaging the material
characteristics of the constituent (orthotropic) layers. For the moduli (b and ey itis

Fig. 5. Composite fiber-reinforced multilayer shell,
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found that the expressions given by (13)-(15) are identical to the corresponding formulae
for the generalized properties of a multilayered shell working in a tension—compression
regime, provided the contribution of the matrix into the reduced properties of the ortho-
tropic layers is negligible. The flexural and torsional stiffness moduli {zc}%> do differ from
the corresponding results for the structurally anisotropic model and may be converted to
these latter by settinge; = 1 (=1, 2..... N) (which means a neglect of the shape of the
cross-section) and replacing by 12 the factor 16 arising in the denominator through the
moment of inertia of the elliptic fiber cross-section. The maximum percentage change in
the values of the effective moduli is obtained for modulus {zc}{> (see Parton et al.. 1991).

CONCLUDING REMARKS

The proposed general model of a homogenized composite shell can be effectively
applied to the analysis of highly heterogeneous shells and plates with regular structure
(composite, porous, reinforced) with various stiffeners (wafer-like, rib-like, honeycomb-
like, corrugated, network, etc.). The convergence of the solution of the three-dimensional
elasticity problem for the curved layer to the solution and/or the homogenized shell model
when the period and thickness tend to zero (¢ — 0) can be proved by methods of the theory
of homogenization under some additive assumptions concerning the functions determining
the shape of the unit cell and the boundary of inclusions. The homogenized shell model
makes it possible to calculate both the overall (effective) properties and local properties of
various types of composite thin-walled structural members now widely used in many fields.
It is not amiss to remark that the rigorous methods we present in the paper provide
corrections, occasionaly appreciable oncs, to effective moduli results that have been obtained
carlicr by other (approximate) methods.
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