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Abstract-A regularly nonhomogeneous (composite). anisotropic. thin curved layer with rapidly
oscillating m.llerial p.lrameters and thickness is considered. It is assumed that the material par­
ameters and thickness are pcrkldic functions.•lOd that thickness and period scale are both small
ami of the S;lme order. The spatial elasticity prohlem for this composite layer is reduced to the new
gencral homogenizcd shcll model by means of the two-scale asymptotic homogcni7-ation mcthod.
The effedive ch"racteristil;s of a homogenizcd shell arc expressed in terms of thc solutions of the
.lIlxiliary 10e,,1 prohlems (In the periodicity cell. The homogcnizcd composite shell model is applied
to the analysis ofclTI.'Clive and 111(;011 pruperties of some composite "nd reinforced shells. The clfl.'Ctivc
eh;tfaeteristies of wafer-like. honeyenmh-like anu fibre-reinforced multilayer composite shells arc
descrihcd. The oht;tined formulae for the elli:ctive par;uneters reline the results of some known
eonstrudivc-;lnisotfllpie theories.

INTRO{)UCrtON

Today. the preponderance of uses for composite materials is in the form of shell and plate
structural members whose strength and reliability. combined with reduced weight and
concomit,lIlt material savings. olli:r the designer very impressive possibilities in some com­
men.:ial upplications. A f,tct which is of interest for us here is that whether the reinforcing
efli:ct comes from "real" clements (say. tibers) or "formal" ones (such as voids. holes and
similar design features), it often happens that these form a regular structure with a period
much smaller than the characteristic dimension of the structural member, with a conse­
quence that the asymptotic homogenization 4lnalysis becomes applicable. The homogenized
models of plates with periodical nonhomogencities in tangential coordinate(s) have been
developed in this way by Duvallt (1976) and some other workers (see Kalamkarov et al.•
1987a for a review). It should be noted, however, that the asymptotic homogenization
method cannot be applicd to a two-dimensional plate and shell theory if the space non­
homogeneities of the material vary on a scale comparable with the small thickness of the
three-dimensional body under consideration. A refined approach developed by Caillerie
(1984) consists of applying the two-scale formalism directly to the three-dimensional prob­
lem of a thin nonhomogeneous layer. An analogous approach was applied by Kohn and
Vogclius (1984) in the probh.:m of bending in thin homogeneous clastic plates with rapidly
varying thickness.

In the present paper the modified homogenization method is applied to the study of a
curved thin composite shell with a regular structure and wavy surfaces (Kalamkarov et al.•
1987b). The starting point is the exact three-dimensional formulation of the elasticity
problem. without resource to the Kirchhoff-Love hypotheses or any similar simplifying
assumptions. Owing to the presence of the small parameter J, the original three-dimensional
problem then proves to be amenable to .1 rigorous asymptotic analysis unifying an asymp­
totic three-to-two dimensions process and a homogcniz'ltion composite material-homo­
geneous material process. The general homogenized model so obtained has many practical
applications in the design of stiffened and composite thin-walled structures (see Parton et
al.. 1991).
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GENERAL 1-I0,\\OGENIZED SHELL '\IODEL

Lt:t us consider a pt:riodically nonhomogent:ous. thin cunt:d layer with rapidly oscil­
lating thickness and introduce orthogonal curvilint:ar nondimt:nsional coordinates :1 1. :1:­
j' such that the coordinate lines :1 1 and :1, coincidt: with the main curvature lint:s of the
midsurface of the shell and tht: " axis is normal to the midsurface (Fig. 1). Let the cell of
periodicity a, (Fig. I) be determint:d by the following int:qualities:

s- 02

Here the small parameter () is the thickness of the skin: parameters hi and h, have the
orders of unity and determine the ratios of the tangential dimensions of the periodicity cell
to the thickness. The periodic functions F' and F deterrnine the shape of the upper and
lower faces of the layer. For Lame coetlicients the following formulae are valid:

where A 1(:1,. :1:) and A, (:1 1• :1 J are the coetlicients of the lirst quadratic form and k I (:11.:1,).
k,(:XI. :1,) the main curvatures of the midsurface (j' = 0).

We begin by introducing the "rapid" coordinates of the problem.

in terms of which the unit ccll n is defined hy the incqualitics

The regular nonhomogeneity of the material is mathcmatically modcled hy the requirc­
ment that the stiffness tensor components a"",,,(Y, . .I':- :) he periodic with unit cell n in thc
coordinates )', and .1':. piecewise-smooth functions. They can have a finite numher or
discontinuities of the lirst kind on the nonintersecting contact surfaces between dissimilar
constituents (such as matrix and libers. binder and inclusions).

Following the asymptotic homogenization mdhod (sec Sa nchez-Palencia. 19XO:
Kalamkarov c( al.. 19X7a. h) we postulate for the displacement vector components II, the
following two-scale expansion:

where:1 = (:1,. :1:): i = 1.2.3: /l11i(-:x • .1'1 • .1':.:) when I = I. 2.... arc periodic functions in
)', and)': with periodicity cell n, It can he proved (sec KalarnkalOv c( (//.• 1987b: Parton
c( al.. 1991) that the following expressions for the main terms of the expansions for the
component of the displacement vector /I, and stress tensor (T" arc valid:

~ y

Fig. I. Cur,t1ill~ar Ihin r~gularly n(}nh'"l1(}g~I1~(}lIS C(}Il1I''''Il~ tayL'r wllh waH ,urf"c~s. utHI cd! n.,.
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• cw(x)
u' = 1",(:X) -J~ -~- +e5U~v6 ..v+,)Z V~vr ..v+ ...

- - A ! e:x! - ~ - ~

U3 = »'(:x)+JL")'6I'v+,F V'r!I'V + ...
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(I)

(2)

These expressions determine the local structure ofdisplacements and stresses with high
accuracy. The summation convention applies whenever indices are repeated. Latin indices
range from I to 3 and Greek ones from I to 2; Ell = 61. E!! = 6!. E I ! = 6!1 = ro/2 are
tension and shear deformations and !II = ~I' !n = ~2' !I! = !21 =! are bending and
torsion deformations of midsurface (,' = J.: = 0). All these deformations can be expressed
in terms of displacements of midsurface l'I' l'! and II' by well-known relations of the thin
shell theory (see. for example. Novozhilov, 1962).

The coefficients in (2) are determined by the following expressions:

(3)

where U:;;' and V~:; in (I) and (3) arc functions of ¢I = AIYI, ¢! = A!y! and:. These
functions arc periodic in variables ~ I' ~! with periods A I and A! rcspcctively, and arc
dctermincd by solutions of the following H,)c.:al problems:

{

I (, h"'+ (1 hi" - 0
J

:'\- ,/1 :'\ d-
'/' (';/1 ( .:

1 n t hi" +n t N" = 0 ,'It
J /' '/I J d

'/'
__ .t
- --

(4)

where n,t arc components of the normal to the upper (S +) and lower (S -) surfaces of the
unit cell (Fig, I) respectively, calculated in the coordinate system ¢" ¢2 and.:.

(n the case of rigid contact on the surfaces of discontinuities of material parameters,
the following conditions must be satisfied:

[UI"n = 0'I' n ~

(5)

where n~') arc components of thc normal to the contact surface. The jump of a function f
on the contact surfacc is denoted by [11

It can be proved that the local problems (3)-(5) have unique solutions defined up to
the additive constants (see Kalamkarov el 01., 1987b). These constants are determined by
thc following conditions:

<U~'>~ = 0 whcn .: = O.(U~v ...... V~;).

Here thc symbol <- . ->~ means integration over the variables ¢ I and ¢2 only.

(6)
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The elastic relations of the homogenized shell. that is. those between the stress and
moment resultants on the one hand. and the midsurface deformations on the other. are
found from (2). We have

N! = J(if;\)£u,.+(F(cr!)r",. (\-2)

N l , = J<M'~>£u,+J'(cJ;',)r,,,

AI, = J'<=bJi\)£,,,.+J'\;(";'i)ru," (1-2)

IU" = 6'<=hr,)£,,,+J'(;c';',>r,,,.

It can be proved that the following relations arise from (3)-(5):

<b~;i> = <h;,~i). <=hix'~> = (c~~>.

<;c~#) = <;c~~). (1'../1./1. t' = 1.2).

(7)

(8)

These relations provide the symmetry of the 6 x 6 coetlkient matrix involved in the
elastic constitutive equations (7), the matrix of effective ela~tic moduli. The averaging
symbol (/) in (7) and (8) means the integration

<f) = rIdYl dy: d:.
",i U

The equations for a homogenized shell can he written in terms of stress and moment
resultants in the following form:

('(A:N\)

('1'. ,

('(A,NJ

(' 'X :

(9)

In the above. the external loads are given by

( 10)

where the functions wI.. delined by the formula

arc determined by the profiles of the shell surfaces i' = i,I : p,~ and p, are the components
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( II )

of loads on the upper and lower faces of the layer. respectively. and Pi are the body force
components. i = 1.2.3; fJ = 1, 2.

By substitution of relations (1) into eqns (9). we obtain the system of governing
equations for t't. Vz and w. The boundary conditions can be given in the form accepted in
the theory of thin elastic shells (see. for example. Novozhilov. 1962). In the simple case of
homogeneous material and uniform thickness. all the local problems (3)-(6) can be solved
exactly and the model obtained can be reduced to the known engineering formulation of
thin anisotropic shell theory.

Let us consider now some applications of the general homogenized shell model.

THE ORTHOGONALLY STIFFENED SHELL

The periodicity cell of the orthogonally stiffened wafer-like shell is shown in Fig. 2. It
consists from three elements. il t • il~ and il J • The local problems have been solved in the
case of small thickness of the cell elements and various anisotropic materials (see Kalamka­
rov, 1989). Formulae for effective stiffness moduli in the more simple case of isotropic
material have the following form:

<hU> = D+ E(F~+K,). <bn> = D+ E(F,+ K I )

<hn> = <h~~> = \·D-EK,. <h:~> = G

<c:: >= E(S~ + K~). <d~> = E(SI + Kz)
<d~> = <d~> = - EKz, <c:~> = 0

<=cll> = D/12+/:Vz+Kd

<=d~> = D/12+E(J , +Kd

<=d~> = <=(~i(> = \'D/12-EK,

I' G{ ,(II I Z )<=cd> = 12 I+ /I }~, + j;~

- 96f:~ f'_=s~r [--~_ 111 (1!~_/!~) +--~- 111 (~~A_~~)J}
1t • _ I tI A ."1 2fl Azh z 2H

D = '-!v i ' G = 2(I~V)' F, = Sl~' Fz= I:l~
S = 0J!i~!"H) J = 11(4HJ+6f1~+3H) (I +-+2).

1 211 I 'I 1211 I •

r n.

8

Fig. 2. Unit cell of a wafer shell in the coordinate syslem:x ,. 2,. y.
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Here E is the Young's modulus; v. is Poisson's ratio; the parameters K I • K~ and K t

can be calculated from the obtained algebraic equations (see Parton et al.. 1989). The
formulae (II) refine the effective parameters of stiffened shells in comparison with known
constructive-anisotropic theory (according to this theory all of them are equal to zero).
According to the calculations. the following conclusions can be drawn. (I) As found from
formulae (II). the elastic moduli <b::>. <b~~>. <c::>. <d~>. <=c::> and <=c~) can be
calculated in the framework of the structurally anisotropic theory (K I = K~ = K, = 0). (2)
For the modulus <h~~>. somewhat greater. but also reasonable. percentage changes are
obtained (for example. 4% in the case H = hi = hz = 10. t l = t~ = I). (3) For the moduli
<c~~> and <=d~> more significant percentage changes occur. Note that while the change
for <=c~~> is only ofa quantitative nature. that for <c~~> is also interesting at a qualitative
level because this modulus vanishes in view of (II) and is assumed to be zero in the
framework of the structurally anisotropic theory of strengthened shells. One more point to
be made is that the percentage changes increase with the height of the ribs (parameter H)

and decrease with the distance between the ribs (parameters hl.~). Using the solutions of
the system (9). from (2) we are in a position to obtain the local stress distributions along
the junctions of reinforcing elements. In particular. if we take II I = h ~ = II. then. in the case
of simple bending (h'l #- 0). the junctions of elements 0 1 and O~ will be subjected to the
stresses

The function (p(=') is shown graphically in Fig. 3. The curves marked I and 2 correspond.
respectively. to the cases II = 20. hi = h~ = 60. t l = (~ = ( = 2 and II = hi = h~ = 20.
(l=t~=0.5.

TilE 1I0NEY('OMII,I.IKE SIlELl.

The problem we consider here is that of a three-layered shell composed of a honeycomh
liller of hexagonal structure sandwiched between two carrying layers as shown in Fig. 4.
The calculation of the nonvanishing effective elastic 11lllduli of the shell of Fig. 4 includes
the solution of the local problems (3) (6) and is somewhat lengthy to be reproduced hen:.
so we only quote the tinal results of the calculation. For an isotropic material. both in the
carrying layers (Eo. 1'0) and in the filler roil (E. 1'). we have

Z'tH

Z'

IcY .p(Z')tE

'9131 '4.004

Fig. J. Strcss fields at thc junctions or strcngthcning e1cmcnts or a warcr shcll undcr ocndlllg.



A model for composite shells

at.

1953

Fig. 4. Three-layered shell with a heltagonal honeycomb filler.

" 11-'voEo Jj ElI't
(:cii) = (:C,,) = -I---;10 + 1"'4'4'•• -Vii a

(:C:~) = 2(~:~o) + '2JfH~~)a F{~-~!s~f

xnt th[1t(2n-I)At!(2fl)](2n-l) 5}. (12)

Here

The first terms in (12) describe the contribution from the carrying layers, and the
second terms describe that from the filler. It is seen that the contribution of the latter may
be made comparable to, or even greater than, that of the former by appropriately varying
the parameters E, H, t and a. The comparison of (12) with the results, obtained by dill'crent
methods in the earlier work on the subject, shows that the greatest corrections occur in the
clastic moduli (Mr) and (:dr) (sec Parton et al., 1991).

TilE MULTILAYER FIBRE-REINFORCED COMPOSITE SHELL

The term high-stiffness composite material usually refers to polymer matrix fiber
reinforcement composites in which the Young's modulus of the fiber phase. Er• is much
larger than that of the matrix phase, Em. Accordingly, the mechanical behavior of the
composite will be predicted with an error of the order of only Em!Er « I if one assumes
that, for comparable fiber and matrix percentage contents, the role of the matrix is negligible
and the stressed state of the composite is determined by the deformation of the fiber system
alone. The state of stress in the matrix itself will then be found from a problem sel in

SAS 19,14/15-R
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the region occupied by the matrix. under appropriately formulated fiber-matrix interface
conditions.

We thus consider a composite shell formed by N layers of parallel fibers. as shown in
Fig. 5. and assume. in accordance with the above. that the fiber material is much stiffer
than that of the matrix. [n this case the solution of the local problems (3)-(6) is much
simplified owing to the decoupling of the regions occupied by fibers and the matrix. and
we will employ this fact when solving these problems for a fiber of the jth layer of the
system (the fiber making an angle tfJ, with the coordinate line:>: I. the departure of the axis
of a fiber from the shell midsurface. " = O. will be denoted by 6a, in coordinates:>: I. :>:~. I').

The exact solution of local problems was found for the case in which a, = O. under the
assumption that the fibers were elliptic in cross-section (K.alamkarov. 1987). We use here
this solution in order to get the following expressions for the effective elastic moduli of the
composite shell :

v

<h~~:> = L E,h,O/.,~ ,
v

<('~p = L EAa,O"
,~ 1

. ~ [. I ( (")J<=('~p =,:-, £,h, (I; + 16 1+ 1+-;, O/' (13)

Here £, and v, are the material properties of fibers in the jth layer: 0, is the volumetric
fiber content in the jth layer: parameters h, and (', are determined from the following
formulae for each combination of indices :>:. {I. ).. II = I. 2 :

:>:{O.jl= 1111: h,=A~B, JcosJ({I,. (',=2A~tan~({I,(I-e/)!J.,:

:>:{O.jl = 2222: h, = A~IJ,- J sin·1 ({I,. 1', = 2:1~(' tan~ ({I, ( I -e,"M,;

':1.{O.jl = 1212: hJ=A;A~IJ, J cos " ({I, sin" ({I,.
l 1" .... .... .. A

e, = "(A i.cot- ({I, + A" tan" ({I, -2Aj:l:)( I-(';)a, :

:>:{I).jl = 1122.2211: h, = A;A~IJ, J cos" (P, sin" (P,. 1', = -2A;A~(1-('/)!J.,;

':1.{O.jl = 1112. 1211: hi = A:A~fJ, J cos 1 (P, sin (P,. 1', = :I~(A~ 1.(/ (p,-A;HI-e/)!J.,:

:>:{I).jl = 1222.2212: h, = A 1 AilJ, J cos (P, sin 1 (P" (', = A;(A;e 1.(/ (P, - A ~H I -e/)!J.,.

( 14)

The notation used in (14) is

( 15)

and l!J is the eccentricity of the elliptic cross-section of a liberof the jth layer. Note that if
we set (I, = 0 (j = I. 2..... N) in expressions (13). these latter reduce to formulae for
effective clastic moduli of a network-reinforced shell (see Kalamkarov. 1987).

It is of interest to compare the expressions (13 )-( 15) with similar results that have been
derived from the structurally anisotropic model. the essential feature of which is that the
average over the thickness of a multilayered shell is taken after first averaging the material
characteristics of the constituent (orthotropic) layers. For the moduli <h~;;> and <c~p. it is

Fig. 5. Composite tiher-reinrorccd multilayer shell.
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found that the expressions given by (13)-(15) are identical to the corresponding formulae
for the generalized properties of a multilayered shell working in a tension--eompression
regime. provided the contribution of the matrix into the reduced properties of the ortho­
tropic layers is negligible. The flexural and torsional stiffness moduli <=~:;> do differ from
the corresponding results for the structurally anisotropic model and may be converted to
these latter by setting ej = I (j = I, 2, .... N) (which means a neglect of the shape of the
cross-section) and replacing by 12 the factor 16 arising in the denominator through the
moment of inertia of the elliptic fiber cross-section. The maximum percentage change in
the values of the effective moduli is obtained for modulus <=crr) (see Parton et al.. 1991).

CONCLUDING REMARKS

The proposed general model of a homogenized composite shell can be effectively
applied to the analysis of highly heterogeneous shells and plates with regular structure
(composite. porous, reinforced) with various stiffeners (wafer-like. rib-like. honeycomb­
like. corrugated, network. etc.). The convergence of the solution of the three-dimensional
elasticity problem for the curved layer to the solution and/or the homogenized shell model
when the period and thickness tend to zero «> --+ 0) can be proved by methods of the theory
of homogenization under some additive assumptions concerning the functions determining
the shape of the unit cell and the boundary of inclusions. The homogenized shell model
makes it possible to calculate both the overall (effective) properties and local properties of
various types of composite thin-walled structural members now widely used in many fields.
It is not amiss to remark that the rigorous methods we present in the paper provide
corrections. occasionaly appreciable ones, to ctfective moduli results that have been obtained
earlier by other (approximate) methods.
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